During an eruption, if the wind is from the east at 10,000 feet (outflow), the tephra will fall on Vancouver, Canada in about an hour. This Page Hyperlinked [click on] Mount Baker Stratovolcano (background)© ™ ®/ Kulshan Stratovolcano© ™ ®, Simon Fraser University (foreground)© ™ ® ~ Image by Stan G. Webb - In Retirement© ™ ®, An Intelligent Grandfather's Guides© ™ ® next, The Man From Minto© ™ ® - A Prospector Who Knows His Rocks And Stuff© ™ ®
Learn more about the Cascadia Volcanic Arc© ™ ® (Part of Pacific Ring of Fire) Cascadia Volcanoes© ™ ® and the currently active Mount Meager Massif© ™ ®, part of the Cascadia Volcanic Arc© ™ ® [ash flow, debris flows, fumaroles and hot springs], just northwest of Pemberton and Whistler, Canada ~ My personal interest in the Mount Meager Massif© is that the last volcanic vent blew north, into the Bridge River Valley [The Bridge River Valley Community Association (BRVCA), [formerly Bridge River Valley Economic Development Society], near my hometown. I am the Man From Minto© ™ ® - A Prospector Who Knows His Rocks And Stuff© ™ ® The 2010 Mount Meager landslide was a large catastrophic debris avalanche that flowed to the south, into the Lillooet Valley British Columbia, Canada, on August 6 at 3:27 a.m. PDT (UTC-7). More than 45,000,000 m3 (1.6×109 cu ft) of debris slid down Mount Meager, temporarily blocking Meager Creek and destroying local bridges, roads and equipment. It was one of the largest landslides in Canadian history and one of over 20 landslides to have occurred from the Mount Meager massif in the last 10,000 years. Although voluminous, there were no fatalities caused by the event due in part to its remote and uninhabited location. The landslide was large enough to send seismic waves more than 2,000 km (1,200 mi) away into the neighboring U.S. states of Alaska and Washington and beyond. Multiple factors led to the slide: Mount Meager's weak slopes have left it in a constant state of instability. The massif has been a source of large volcanic debris flows for the last 8,000 years, many of which have reached several tens of kilometres downstream in the Lillooet River valley., to the south. It is arguably the most unstable mountain massif in Canada and may also be its most active landslide area. And on the north side lies Downton Lake Hydro Reservoir, impounded by the La Joi Dam, the uppermost of the Bridge River Project dams. The earliest identified Holocene landslide was in 7900 BP (before the present, or read it as the number of years ago). Further landslides occurred in 6250 BP, 5250 BP, 4400 BP, 2600 BP, 2400 BP, 2240. BP BP, 2170 BP, 1920 BP, 1860 BP, 870 BP, 800 BP, 630 BP, 370 BP, 210 BP, 150 BP and in 1931, 1947, 1972, 1975, 1984, 1986 and 1998. These events were attributed to structurally weak volcanic rocks, glacial unloading, recent explosive volcanism and glacial activity. Those who dance with earthquakes and volcanoes are considered mad by those who cannot smell the sulfur. We begin to deal with BIG (MEGA) EARTHQUAKES at Simon Fraser University (foreground) Kulshan Stratovolcano© / Mount Baker Stratovolcano (background)©New Cascadia Dawn© - Cascadia Rising - M9 to M10+, An Intelligent Grandfather's Guide© next, ~ Images by Stan G. Webb - In Retirement©, An Intelligent Grandfather's Guides©Countdown to Earthquake Drill - International Great ShakeOut Day is on Thursday, October 20, 2022 at 10:20AM, and annually on the 3rd Thursday in October thereafter - - I grew up in small towns and in the North where the rule is share and share alike. So, I'm a Creative Commons type of guy. Copy and paste ANY OF MY MATERIAL anywhere you want. Hyperlinks to your own Social Media are at the bottom of each post. Creative Commons License
This work is licensed under my Creative Commons Attribution 4.0 International License.

Sunday, January 9, 2022

Questions and Answers on Megathrust Earthquakes

Simon Fraser University, foreground; in the background is Koma Kulshan or simply Kulshan / Mount Baker, a 10,781 ft (3,286 m) active glacier-covered andesitic stratovolcano in the Cascade Volcanic Arc and the North Cascades of Washington in the United States. Mount Baker has the second-most thermally active crater in the Cascade Range after Mount St. Helens.  United States Geological Survey rate this a high risk volcano, second only to Mount St. Helens.

Countdown to next earthquake drill at 10:17AM, Saturday, October 17, 2022

Questions and Answers on Megathrust Earthquakes Questions and Answers on Megathrust Earthquakes What is a megathrust earthquake? A megathrust earthquake is a very large earthquake that occurs in a subduction zone, a region where one of the earth's tectonic plates is thrust under another. The Cascadia subduction zone is located off the west coast of North America. From mid Vancouver Island to northern California the Juan de Fuca Plate is subducting beneath the North American Plate. The two plates are continually moving towards one another, yet become "stuck" where they are in contact. Eventually the build-up of strain exceeds the friction between the two plates and a huge megathrust earthquake occurs. How often do megathrust earthquakes occur? The recurrence time varies from subduction zone to subduction zone. In the Cascadia subduction zone 13 megathrust events have been identified in the last 6000 years, an average one every 500 to 600 years. However, they have not happened regularly. Some have been as close together as 200 years and some have been as far apart as 800 years. The last one was 300 years ago. How big can they be? Megathrust earthquake are the world's largest earthquakes. The last Cascadia earthquake is estimated at magnitude 9. A megathrust earthquake in Chile in 1960 was magnitude 9.5, and one in Alaska in 1964 was magnitude 9.2. Where do megathrust earthquakes occur? The Cascadia fault, on which megathrust earthquakes occur, is located mostly offshore, west of Vancouver Island, Washington, and Oregon, although it does extend some distance beneath the Olympic Peninsula of Washington State. The large distance between the Cascadia fault and the urban centres limits the level of shaking that the urban areas are exposed to. How do we know that megathrust earthquakes have occurred? The sudden submergence of the outer coast when a megathrust earthquake occurs kills vegetation which can be dated. Megathrust earthquakes also cause underwater landslides off the continental shelf into the deep ocean. The landslide deposits can be recognized in core samples taken from the ocean floor. How do we know that we are going to have one in the future? The deformation of the crust in a predictable pattern can be detected by very careful geodetic measurements using Global Positioning Satellites, precise levelling, micro-gravity measurements and changing distance measurements using laser technology. If the shaking of a magnitude 7 is 10 times greater than a magnitude 6 and 100 times greater than a magnitude 5, is the shaking from a magnitude 9 100 times greater than a magnitude 7? No. Earthquake shaking, in the frequencies that damage buildings, increases to a maximum between a magnitude 7 and 8 earthquake, then the shaking simply involves a bigger area. However, the duration of shaking for a megathrust earthquake is much longer. It can be several minutes. This long duration can result in damage to some types of buildings that might not be damaged at the same strength of shaking produced by a smaller earthquake. If a magnitude 6.9 earthquake can devastate Kobe, Japan, what would a magnitude 9 megathrust earthquake do to Vancouver? The Kobe earthquake was right beneath the city and the megathrust earthquake will be about 150 kilometres from Vancouver. The damage pattern would be very different. We can get a good example of the kinds of damage Vancouver can expect to experience if we look at what happened to Anchorage, Alaska, during the 1964 magnitude 9.2 megathrust earthquake. Anchorage is about the same distance from the Alaska subduction fault. Small buildings generally had little or no damage, unless they were affected by landsliding. Almost all the damage involved large buildings or large structures such as bridges. Are megathrust earthquakes our biggest earthquake hazard? No. Inland earthquakes, which are not as big but can be much closer to our urban areas and occur much more frequently, are our biggest earthquake hazard. Why do megathrust earthquakes cause tsunamis? The thrusting motion of megathrust earthquake causes large vertical movement on the sea floor and this displaces a large volume of water which travels away from the undersea motion as a tsunami. Will Vancouver Island sink when a megathrust earthquake occurs? No. Vancouver Island is part of the North American plate. The fact that there is water between Vancouver Island and the mainland is function of the current position of sea level. However, the west coast of Vancouver Island will drop as much as a metre or two when the next megathrust earthquake occurs. Is all of coastal BC vulnerable to tsunamis from a megathrust earthquake? No. Just the coast exposed to the open Pacific is vulnerable to damaging tsunamis waves. The areas vulnerable to tsunamis are indicated in the red-tabbed pages of the telephone books published for the coastal communities of British Columbia If we have lots of little earthquakes will they relieve the stress building up for a megathrust earthquake? No. It takes many, many small earthquakes to release the amount of energy equivalent to a large earthquake. The amount of energy released increases about 40 times every time there is an increase of one unit on the magnitude scale. Thus, if we consider a small earthquake at the felt level, about magnitude 2, there would have to be 40x40x40x40x40x40x40 of these earthquakes to release the amount of energy as one magnitude 9 event. That is about one million small earthquakes a day, every day, for 500 years. That level of earthquake activity is not observed.

No comments:

Post a Comment